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A method is presented for structural mass and stiffness estimation including damping

effects and using vibration data. It uses the frequency response function (FRF) and

natural frequencies data for finite element model updating. The FRF data are compiled

using the measured displacement, velocity or acceleration of the damaged structure.

A least-square algorithm method with appropriate normalization is used for solving the

over-determined system of equations with noise-polluted data. Sensitivity equation

normalization and proper selection of measured frequency points improved the

accuracy and convergence in finite element model updating. Using simulated

measurements shows that this method can detect, locate and quantify the severity of

damage within structures.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Early structural damage detection is desirable to prevent structural failure and human loss of life. Non-destructive
testing (NDT) methods can complement visual inspections as an objective method leading to quantifiable results. Current
NDT techniques such as ultrasound, X-ray, dye penetrates, magnetic particle, and acoustic emission are often limited to
observation in a limited area and rely on a presumption of the likely area of damage. Structural damage detection using
non-destructive vibration test data has received considerable attention since early in the decade. The basic principle is that
occurrence of damage will change the static and dynamic characteristics such as displacement, strain, natural frequencies,
damping loss factors, mode shapes and frequency response function (FRF). The ability to detect and quantify these changes
demonstrate that it is feasible to use FRFs for damage diagnosis and health monitoring of aerospace, mechanical, and civil
engineering structural systems.

Existing structural parameter identification methods can be classified into several groups depending on the type of
acquired data used to detect, locate, and/or quantify structural damage. They include changes in modal data [1–5],
frequency response functions [6,7], strain energy [8], transfer function parameters [9], flexibility matrix [10], residual forces
[11], mechanical impedances [12] and so forth. Most of the literature on structural damage detection relies on using modal
analysis data that are extracted from FRF data, the most compact form of vibration data. An extensive review on the subject
can be found in [13,14]. Such methods are based on algorithms involving extensive numerical computing processes, matrix
inversion, and curve fitting techniques. As discussed by Banks et al. [15], the structural damage detection methods based
on modal data have some shortcomings. Because the modal data are indirectly measured test data, they could be
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contaminated by measurement errors and modal extraction errors. In addition, complete modal data cannot practically be
obtained in most cases because they often require a large number of sensors.

In this paper, the authors address the challenges in using measured FRF data and present methods for successful use of
such data for finite element model updating. Vibration-based damage detection using measured FRF has been studied by a
number of researchers [16–21]. There are several advantages in using direct FRF measurements. FRF data can be extracted
without further numerical processing and hence will not be contaminated by modal extraction errors and loss of
information due to the curve fitting. Because of this, it is more reliable and practical to use directly-measured FRF data for
finite element model updating for structural damage detection, particularly for structures with closely spaced modes. FRF-
based damage detection methods can provide abundant information at measured degrees of freedom and at a great
number of desired frequencies [18], as opposed to modal data, which are extracted from a very limited number of FRF data
at resonance frequencies. Also, FRF data in the vicinity of resonant frequencies is not necessary to provide the most reliable
damage detection [22]. The proper selection of frequency ranges must be addressed by choosing ‘regions’ of FRF that are
not adversely corrupted by noise. If improper frequency points are adopted, the measurement error may seriously affect the
results. Due to the aforementioned advantages of FRF data over the modal data, it seems very promising to use the
measured FRF data for identifying structural damage [23–25].

Furukawa et al. [26] combine the deterministic damage identification technique with hypothesis testing based on the
bootstrap method, using harmonic excitation force data. They investigate the uncertainty effect of measurement noise and
modeling errors in the baseline model. Lee and Shin [27,28] developed a structural damage identification method for beam
and plate structure using FRF data. They applied a concept of reduced-domain method to iteratively search out and remove
damage-free zones from the original domain of the problem. They extended their method to orthotropic plates [29].

Ni et al. [30] investigate the efficiency of the principle component analysis (PCA) concept to identify the seismic damage
of a 1:20 scale model of a 38-storey reinforced concrete building using measured FRFs and neural networks on a shaking
table. It is shown that the identification results by means of the FRF projections on a few principal components are much
better than those obtained directly using the measured FRF data. Hwang and Kim [31] used FRF data to find the location
and severity of damage in structures by considering only a vector subset of the full set of FRFs. Zimmerman et al. [32]
extend previous developments in minimum rank perturbation theory (MRPT) for damage detection through the FRF
concept. The algorithm sensitivity to noise is investigated using different experimental and numerical test data sets for two
setups: the NASA 8-bay truss and the I-40 bridge over the Rio Grande. The FRF-based results are shown to be insensitive to
noise if proper frequency lines are used and provide a damage assessment similar to that obtained using identified modal
parameters, but at a substantially reduced level of effort.

Araujo dos Santos et al. [33] propose a damage identification method based on FRF sensitivities. They indicate that
better identification results are obtained in lower frequency ranges and excitation points where there are no nodes. It was
found that the number of required mode shapes to constructed FRF matrices should be at least three times the number of
contained natural frequencies and mode shapes in the desired range of frequency. It is demonstrated that for small
amounts of damage the measurement errors are the main influence in the identification quality, whereas for larger
amounts of damage the incompleteness of measurements becomes the most important factor. A procedure for weighting
and deletion of equations is used to improve the identification results.

In this work a FRF-based finite element model updating algorithm is presented using harmonic forced vibration FRF of
the damaged structure. Changes in the FRF of structures due to damage are correlated to changes of stiffness, mass and
damping properties through damage sensitivity equations, which have been derived using the FRF of intact structures and
measured natural frequencies. Examples of the unknown structural stiffness and mass parameters that will be updated in
this process are axial rigidity (EA), bending rigidity (EI), torsional rigidity (GJ), and mass per unit length ðm̄Þ. The impedance
matrix of the damaged structures is approximated by using the measured natural frequencies of the damaged structure and
normalized mode shapes of the undamaged (or intact) structure. Damage sensitivity equations are solved by the least
square method through proper normalization procedure. The effect of excitation frequency and weighting methods on
results has been addressed. A truss model example is used to show successful structural parameter estimation for finite
element model updating and damage assessment using noisy FRF data.

2. Theoretical development

A general mathematical derivation of equation of motion of an n degree of freedom system is given as

M €xþ C _xþ Kx ¼ fðtÞ (1)

where M, C and K are n�n mass, damping and stiffness matrices, respectively. f(t) is an n� 1 vector of applied force and x,
_x and €x are n�1 vectors of the structural displacement, velocity and acceleration. Assuming a harmonic input, the applied
force and displacement response vectors can be expressed as

fðtÞ ¼ FðoÞejot and fðtÞ ¼ XðoÞejot (2)

where o is the frequency of the excitation load and j ¼
ffiffiffiffiffiffiffi
�1
p

. Substituting Eq. (2) into Eq. (1) yields

ð�o2Mþ joCþ KÞXðoÞejot ¼ FðoÞejot (3)
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Defining

BðoÞ ¼ ð�o2Mþ joCþ KÞ (4)

Eq. (3) can be written as

BðoÞXðoÞ ¼ FðoÞ (5)

where B(o) is an n�n matrix referred to as the system impedance matrix or, for simplicity, the system matrix. Then the
transfer functions matrix H(o) is an n�n matrix that can be defined in terms of the system characteristics such as mass,
stiffness, and damping as

HðoÞ ¼ BðoÞ�1 ¼ ð�o2Mþ joCþ KÞ�1 (6)

and structural response can be calculated in frequency domain as

XðoÞ ¼ HðoÞFðoÞ (7)

It is assumed that the damage causes the changes in the stiffness, mass and damping matrices by amount of dK, dM and dC
respectively. These changes are proportional to system parameters and obey the general connectivity of the structure. The
forced vibration Eq. (7) can be rewritten as

ð�o2ðMþ dMÞ þ joðCþ dCÞ þ Kþ dKÞðXðoÞ þ dXðoÞÞ ¼ FðoÞ (8)

An analytical representation of the change in the response is determined by expanding (8) and subtracting (7), yielding

dXðoÞ ¼ �HdðoÞðdKþ jodC�o2dMÞXðoÞ (9)

where dX(o) is the change in dynamic response at each frequency due to damage and the FRF of the damaged structure is

HdðoÞ ¼ ð�o
2ðMþ dMÞ þ joðCþ dCÞ þ Kþ dKÞ�1 (10)

Eq. (9) expresses the dependence of the response of the structure on the changes of the stiffness, mass and damping
matrices.

The complete transfer function of the damaged structure Hd(o) is required to construct Eq. (9), which necessitates
measurements at all DOFs. This is quite impractical. In an iterative procedure one may approximate it either by the transfer
function of the intact structure, or by evaluating it by Taylor series expansion using the derivative of H(o), which will
increase the order of equations. Another issue is that the derivative of H(o) is a highly discontinuous and non-monotonous
function for lightly damped structures.

The transfer function matrix H(o) can be decomposed in modal coordinates using mode shapes and natural
frequencies as

HdðoÞ ¼
Xm

i¼1

fif
T
i

O2
i �o2 þ 2jxiOio

(11)

where fi is the ith mode shape of the structure, Oi represents the ith natural frequency, o is the excitation frequency, and xi

is the modal damping loss factor of the ith mode shape. As an approximation, one may use a truncated form of (11) to
compute transfer function in the decomposed form using a subset of modal characteristics. The number of required mode
shapes is dependent on the magnitude of the excitation frequency in comparison to the natural frequencies. As stated by
Araujo dos Santos et al. [38], for a well-defined approximation of H(o) the number of the measured natural frequencies
must be large enough in comparison to the maximum applied excitation frequency. They state that the frequency of the last
considered mode of vibration in the truncated form must be at least three times that of the excitation frequency.

Since it is impractical to measure all natural frequencies and identify mode shapes at all DOFs for the damaged
structures, in order to obtain a practical representation of the Hd(o) it is approximated using the analytical mode shapes of
the intact structure f, the measured natural frequencies of the damaged structure Oid and measured damping loss factor
xid as

HdðoÞ ffi
Xm

i¼1

fif
T
i

O2
id �o2 þ 2jxidOido

þ
Xn

i¼mþ1

fif
T
i

O2
i �o2 þ 2jxiOio

(12)

where m is the number of the measured natural frequencies and n is the number of DOFs. This approximation in (12) is
realistic because it is possible to measure natural frequencies with high accuracy. The second term is related to the
unmeasured part of Hd(o), and is used to alleviate incomplete measurements effects. Numerical simulation shows that this
part increases the accuracy of (12) and convergence rate. Eq. (12) improves its accuracy by updating fi and Oi as the
optimization process updates the parameters of the structure. The advantage of using an approximate computation of the
transfer function is that the derivative of H(o) is avoided. It will be shown numerically that (12) is a good approximation of
Hd(o). Also, B(o) in (4) is a linear explicit function of the parameters [34], so its derivative (�o2dM+jodC+dK), shows a
smooth behavior and its computation is numerically stable.
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Using sensitivity Eq. (9) one can simultaneously estimate stiffness, mass and damping properties of the damaged
structure. Generally, energy dissipation and damping are not only related to the material property of individual elements,
but are also caused by structural connections, joints and non-structural members, which are not modeled in most of finite
element modeling. Depending on the case study and structural behavior, one may prefer to use measured data to model
damping by modal or structural damping model. Since in this method natural frequencies and damping loss factors are
measured, it is possible to model damping by the desired model and use it in (9). Using measured modal damping factors
will reduce the number of unknowns and the number of required measurements for model updating. Also, damping of the
structure is far more significant at resonance frequencies as it dominates the amplitude of FRF. The damping influence on
the response rapidly decreases by moving away from the resonance frequencies.

The global stiffness matrix K and mass matrix M will be updated using the proposed method. The stiffness and mass of
the intact model are the sum of the element matrices:

K ¼
XnE

r¼1

Kr (13)

M ¼
XnE

r¼1

Mr (14)

where nE is the number of elements, and Kr and Mr are respective contributions of the rth element to the global stiffness
and mass matrices of the model. The reduction in the element stiffness and mass matrixes of the damaged structure
determined from the intact model are

dK ¼
XnE

r¼1

dKr ¼
XnE

r¼1

ðKrd � KrÞ ¼
XnE

r¼1

dkrKr (15)

dM ¼
XnE

r¼1

dMr ¼
XnE

r¼1

ðMrd �MrÞ ¼
XnE

r¼1

dmrMr (16)

where dkr and dmr are scalar multipliers representing proportional changes in the stiffness and mass matrices of the rth
element in the damaged state from their values in the intact state. Therefore, variations in the stiffness and mass matrices
at the system level are expressed as the sum of changes in these matrices at the element level. For frame elements, (15) and
(16) are decomposed to separately update various structural parameters (e.g., EA, EI, GJ, etc.).

Rewriting (9) using Eq. (12), after mathematical manipulations, the change of the dynamic response subjected to the
applied harmonic load is obtained as

dXðoÞ ¼ SSdkþ SMdm (17)

SS and SM are analytical sensitivities of the dynamic response to the change in stiffness and mass parameters at the element
level using a well approximated Hd(o). It is evaluated as

SS
ðk;rÞ ¼ �H�1

dk ðoÞðKrÞXðoÞ (18)

SM
ðk;rÞ ¼ H�1

dk ðoÞðo
2MrÞXðoÞ (19)

where SS
ðk;rÞ is the (k,r) entry of SS, stiffness-sensitivity matrix, and SM

ðk;rÞ is the (k,r) entry of SM, mass-sensitivity matrix.

Hdk(o) is the kth row of the approximated transfer function of the damaged structures defined in (12), and Kr and Mr are
the stiffness and mass matrices of the rth elements which are assembled into the global stiffness and mass matrices.

Changes in stiffness and mass properties can be determined using (17) by several methods such as the least square
method (LS), non-negative least square method (NNLS), and singular value decomposition method (SVD). The quality of
predicted damage by (17) depends on several factors including the sensor types and locations, excitation types and
locations, the quality of measured FRF data (measurement error), selected frequency points for model updating, accuracy of
the mathematical model (modeling error), observability of the unknown parameters, weighting techniques applied to the
system of equations, and numerical methods used for solution of the system of equations. A balanced attention to these
factors is expected to lead to less estimation errors in finite element model updating.

The least-squares solution is dominated by the equations with the largest numerical coefficients. This is caused by the
types, locations and frequency ranges of excitation and the types and location of measurements. This means that some
equations overshadow the information in other equations. Several methods have been suggested in the literature for
weighting the system of equations. One may multiply both sides of each equation by a scaling factor so that the sum of
square of coefficient in a resultant equation is unity, or omit some of the equations with smaller sensitivities to the
unknown parameters [35,36]. If the ith equation associated with the frequency o has elements Xi(o) and Xid(o) of similar
magnitudes, the adverse effects of measurement errors may be significantly magnified after the weighting. To overcome
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this problem, such an equation should be removed [35]. It is necessary to emphasize that deciding to remove such points in
highly noise-contaminated regions is misleading and it is preferable to avoid such points of frequency for model updating.

In a more general form, the FRF of a structure can be evaluated using the velocity or acceleration responses, which are
known as mobility and accelerance respectively:

VðoÞ ¼
_XðoÞ
FðoÞ

¼ oHðoÞ (20)

AðoÞ ¼
€XðoÞ
FðoÞ

¼ �o2HðoÞ (21)

Comparison of (20) and (21) with (7) shows that the excitation frequency acts as a weighting factor on FRF data. If the
identification process is carried out using a single excitation frequency data, there is no difference between results obtained
by impedance, mobility and accelerance. In a multi-excitation frequency identification process, mobility and accelerance
are weighted forms of the FRF of the structure by o and o2, therefore the solution of these equations might be dominated
by the associated equation to the higher order of frequencies. Also, some researchers suggest multiplying each equation by
o�1 to decrease inaccuracy of the finite element modeling at higher frequency ranges [37]. In this paper, model updating is
performed in selected frequency ranges. FRFs of the structure for each selected frequency point can be very different.
Generally, equations related to the higher frequency have the lower amplitude and as a result will be overshadowed by the
equation associated with lower frequencies. It should be noted that because of more localized behavior of structures at
higher frequencies, these equations contain more information about damage. Therefore, in this paper, at individual mass
and stiffness identification cases, each row of sensitivity equation matrix will be weighted by the inverse of its second
norm. For simultaneous mass and stiffness parameters estimation no weight is applied. By this weighting, the contribution
of the equation of higher frequency will be improved.

3. Application

The presented damage detection algorithm was applied to a six bay truss structure with the geometry and connectivity
shown in Fig. 1. Each span is 2 m for a total of 12 m. The structure is modeled numerically using finite element method with
basic structural elements, i.e. axial elements. Truss elements are made from steel with Young’s modulus of 200 Gpa, mass
density of 7300 of kg/m3, and cross sectional areas are as given in Table 1. The degrees of freedom of this truss model are
shown in Fig. 2.

The unknown parameters are axial rigidity of elements and EA where A is the cross-sectional area and E is Young’s
modulus. Several damage scenarios are considered to investigate the influence of location, severity, and number of the
damaged elements on the robustness of the proposed method. Table 2 shows specifications of these cases.

For the structure shown in Fig. 1, the FRF data should be either extracted from a non-destructive test or simulated
numerically using the finite element method. Simulated data is used in this study. A single harmonic load is applied at the
degree of freedom numbers 4, 8 and 17 at each load cases. Degrees of freedom numbers 1, 8, 14, 15, 20 and 21 are selected
as six measurement locations. Measurement errors are considered by adding random errors to the simulated data from the
finite element model. In this paper, 10 percent uniform random error has been added to the exact data of the finite element
Fig. 1. Geometry of bowstring truss model.

Table 1
Cross-sectional area of truss members.

Member Area (cm2)

1–6 18

7–12 15

13–17 10

18–25 12
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Fig. 2. Degrees of freedom of truss model.

Table 2
Percent of stiffness and/or mass reduction of truss elements.

Case number Element number and percent of damage

1 Element no. 7 18 – – –

Damage 40% (K) 50% (K) – – –

2 Element no. 7 14 18 – –

Damage 30% (K) 30% (K) 20% (K) – –

3 Element no. 4 9 13 20 25

Damage 20% (K) 30% (K) 30% (K) 20% (K) 20% (K)

4 Element no. 6 14 – – –

Damage 30% (M) 25% (M) – – –

5 Element no. 10 18 25 – –

Damage 20% (M) 20% (M) 20% (M) – –

6 Element no. 3 8 17 23 –

Damage 30% (M) 40% (M) 40% (M) 30% (M) –

7 Element no. 3 16 24 – –

Damage 30% (K) 30% (K) 30% (K) – –

Element no. 3 20 – – –

Damage 30% (M) 20% (M) – – –

8 Element no. 4 13 15 20 25

Damage 30% (K) 30% (K) 30% (K) 30% (K) 30% (K)

Element no. 4 13 22 – –

Damage 30% (M) 30% (M) 20% (M) – –

A. Esfandiari et al. / Journal of Sound and Vibration 326 (2009) 557–573562
model. Some researchers assume that the natural frequencies of light damped structures can be measured noise-free
or at least with a high level of confidence using available precise and low noise accelerometers and data acquisition
systems [37].

The numerical simulation by the authors shows that adding 0.5 percent normally distributed random noise to the
measured natural frequencies does not significantly impact the estimated parameters, if the excitation frequency of the
applied loads are not in the vicinity of the nearest measured natural frequencies. Eq. (12) is used to illustrate this
phenomenon. For undamped or light damped structures, the denominator of Eq. (12) and consequently Hd(o) is dominated
by O2

id �o
2. If the excitation frequency is selected close to the resonance frequency a small error in measured frequency

introduces a significant change in O2
id �o

2. By moving away from the resonance frequency this impact will be significantly
reduced, resulting in a less measurement error-sensitive transfer function Hd(o). Additionally, by moving the excitation
frequency away from resonance frequency, the response is less sensitive to damping and errors in damping measurements.
Therefore, at all of the damage simulations in this study, noise-free natural frequencies have been considered and it has
been assumed that the first 10 natural frequencies of the damaged structures are measurable at each load cases. The
natural frequencies of the damaged structure are presented in Table 3.

Success of the proposed method is heavily dependent on the excitation frequency. Some practical rules for selecting this
excitation frequency are given in [22]. The selected excitation frequency points must not be very close to the natural
frequencies of the damaged structures to prevent resonance phenomena and noise-induced measurement. In addition,
higher mode shapes are more local and therefore more sensitive to damage in comparison to lower mode shapes, although
a large number of sensors must be provided to track their changes. Therefore, it is expected that higher excitation
frequencies, which excite the higher mode shapes, yield better results.

Noting that the validation of dX(o) in (17) is dependent on the accuracy of Hd(o) in (12), proper adoption of excitation
frequency becomes more important. Hd(o) is singular at the resonance frequencies. Hd(o) is insensitive to changes away
from natural frequencies. Excitation frequencies should not be selected at resonance frequencies to avoid non-smooth and
non-monotonous peaks of the transfer function. Since good sensitivities are achieved by approaching the natural frequencies
[34], near resonance frequencies are recommended for measurements. Therefore, intermediate excitation frequencies ranges
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Table 3
Natural frequencies of the damage cases.

Mode no. Intact Damage case

1 2 3 4 5 6 7 8

1 30.3 29.2 29.6 29.3 30.6 30.8 31.3 30.4 30.4

2 69.0 63.0 65.1 67.2 69.8 70.0 70.6 68.6 68.6

3 96.3 96.3 96.2 95.6 97.5 97.8 99.4 96.1 96.5

4 181.8 172.4 176.5 176.4 183.6 183.7 187.9 180.0 181.7

5 223.2 220.8 221.7 214.7 227.8 226.3 229.1 221.5 209.7

6 275.6 268.2 271.4 267.4 279.0 279.0 284.2 275.4 271.9

7 321.6 320.3 309.5 319.4 323.9 324.5 334.5 303.7 303.6

8 352.0 338.0 335.1 340.6 355.0 357.0 358.1 343.8 342.0

9 357.7 355.4 349.7 349.8 360.8 361.8 365.6 354.5 355.9

10 373.0 368.3 369.0 363.7 375.7 378.0 386.7 372.4 368.9

-35

-30

-25

-20

-15

-10

0 50 100 150 200 250 300 350
f (Hz)

lo
g 

(F
R

F)

Exact
m = 15 
m = 10 

Fig. 3. Exact FRF of the damaged structure and approximate FRFs by Eq. (12).
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are used for parameter estimations, (i.e., not in the immediate vicinity of resonances and not too far away from resonances).
Also, the number of measured natural frequencies affects the accuracy of dX(o) in (17). Unmeasured natural frequencies
affect the evaluated transfer function of the damaged structure Hd(o) and, consequently, the predicted parameters. For more
illustration on the effects of incomplete frequency measurements and propagated errors in the transfer function of a typical
FRF of a damaged structure, exact Hd(o) and its approximated evaluation by (12) are plotted in Fig. 3. These FRFs are related
to the degree of freedom number 21 and subjected to the harmonic load at the degree of freedom number 10. Fig. 3 shows
that Eq. (12) is more accurate at frequencies close to resonance frequencies. As mentioned before, the required number of
measured natural frequencies to construct Hd(o) is dependent on the frequencies of excitation [38]. Fig. 3 indicates that for
low excitation frequencies a good accuracy can be obtained using fewer measured natural frequencies, while for a higher
range of excitation frequencies, more numbers of measured natural frequencies must be considered. Although Araujo dos
Santos et al. [38] restrict the range of excitation frequencies based on the highest measured natural frequency for
approximation of H(o), as shown in Fig. 3 the proposed formulation of approximate transfer function (12) is still valid in the
high frequency range and close to resonances. This increases the chance of using higher excitation frequencies, even using a
low number of measured natural frequencies for the damaged structure.

Using all of the FRF data for model updating is suggested by some researchers [33]; also excluding a part of the FRF data
is recommended based on the previous discussions [34]. Using all of the data is not recommended by this study, since
around the anti-resonance frequencies measurements are more noise contaminated. As stated before, Xi(o) and Xid(o) of
similar magnitudes can adversely affect parameter estimation results and should be excluded from the range of frequencies
used for model updating. Any decision for omitting such measured responses in the highly noise contaminated regions is
misleading and it is preferred to avoid such regions in model updating. Hence, it is recommended that frequency points
around anti resonances and far from resonances be excluded from model updating.

It should be mentioned that, in this method, the desired frequency range for model updating will be selected after
measurement of the natural frequencies of the damaged structures. This way, one can select the frequency point of model
updating at the region in which the occurred damage caused more changes in the natural frequencies, since the change of
natural frequency consequently causes the change in the FRF.
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Numerical simulation of this study shows that although for a low level of noisy data a few frequency points is enough
for model updating, for higher levels of noise presence more data with a high sensitivity to the parameters changes can
guarantee a robust parameters estimation. Therefore, in this paper a range of the frequency points close to analytical and
corresponding measured resonances are considered for model updating except frequency points between them. The
selected frequency ranges for model updating are given in Table 4 and used at 1 Hz intervals.

Monte Carlo simulations were conducted using different numbers of observations (i.e. 25, 50 and 100), and it was found
that there is very little difference between the average of the estimated parameters and their standard deviation. Model
updating processes at each Monte Carlo simulation did converge in 10–20 iterations. All of the reported results were
obtained using 50 observations. Figs. 4–11 show results of the damage detection scenarios.
Table 4
Frequency ranges for model updating in each case.

Damage case 1 2 3 4 5 6 7 8

Frequency ranges 210–216 210–216 205–210 215–220 215–220 212–217 173–178 225–230

227–235 227–235 228–235 230–240 230–240 233–240 183–188 260–268

258–263 259–267 258–263 260–270 260–270 262–272 216–220 277–283

278–285 279–285 278–285 283–290 283–290 290–299 224–227 295–300

325–328 328–338 325–330 325–335 327–335 306–315 270–275 325–329

– – – 363–368 364–369 390–400 277–280 330–339

– – – – 382–390 – 300–303 343–347

– – – – – – 335–343 359–364
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Fig. 4. Actual and predicted damage for case 1 (stiffness estimation).
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Fig. 5. Actual and predicted damage for case 2 (stiffness estimation).
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Fig. 6. Actual and predicted damage for case 3 (stiffness estimation).
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Fig. 7. Actual and predicted damage for case 4 (mass estimation).
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Fig. 8. Actual and predicted damage for case 5 (mass estimation).
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Fig. 9. Actual and predicted damage for case 6 (mass estimation).

-0.1

0

0.1

0.2

0.3

0.4

1
Element No.

D
am

ag
e 

Pe
rc

en
t

Actual Damage
Predicted Damage

-0.1

0

0.1

0.2

0.3

0.4
D

am
ag

e 
Pe

rc
en

t
Actual Damage
Predicted Damage

3 5 7 9 11 13 15 17 19 21 23 25 1
Element No.

3 5 7 9 11 13 15 17 19 21 23 25

Fig. 10. Actual and predicted damage for case 7: (a) stiffness estimation; (b) mass estimation.
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Fig. 11. Actual and predicted damage for case 8: (a) stiffness estimation; (b) mass estimation.
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As illustrated by Figs. 4–11, this method is capable of detecting the damage location and severity using the incomplete
noisy measured FRF data. In all damage cases, all 50 Monte Carlo simulations converged.

In stiffness updating processes, some deviation in stiffness identification is possible due to an inaccurate assumption
regarding the mass of the intact and damaged structures. This inaccurate assumption introduces some errors in the
undamaged eigenvector of the structures that will be used to construct sensitivity equations. In this study, numerical
simulation proved that, at the selected excitation frequencies, considering 10 percent random error in mass matrices does
not affect the results. It should be noted that for real structures in which the floor masses are more significant than the
framing, mass modeling errors become more significant and it is necessity to consider mass model updating.
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In structural dynamics, the mass matrix used in the FEM model is not an exact representation of the mass distribution
effects, but the effect of using an incorrect mass on parameter estimation accuracy becomes low if a small excitation
frequency is used. The reason is that the responses due to harmonic excitation are controlled by the transfer function
described in Eq. (10), and joC+K becomes relatively large compared to o2M with a small circular frequency. Therefore, the
contribution of the mass matrix to the responses will be small, as is the contribution of inaccurate mass to the
identification results.

The average of the estimated parameters does not reflect the robustness and confidence of the parameters estimation
process. To investigate the robustness of a method, it is necessary to check the standard deviation of predicted unknown at
Monte Carlo simulations. Low standard deviation indicates a robust method. For illustration purposes, standard deviation
of the estimated parameters at the third case of damage scenarios is plotted in Fig. 12. Because this paper deals with the
percentage of changes and not absolute values, presented standard deviations are unit-less.

Except of element number 8, Fig. 12 shows standard deviations of all predicted stiffness parameters of elements are low
and indicate a robust solution. Also, the high standard deviation of element 8 indicates a low observability of this element
compare to the other elements.

In order to quantify the accuracy and comparison of the predicted results, some indexes are used to evaluate the
confidence level of the results. The damage missing error (DME) is defined as [39,40]

DME ¼
1

NT

XNT

e¼1

�I
e for 0 � DME � 1 (22)

where NT is the number of true damaged elements and �I
e ¼ 0 if the location of truly damaged element is identified, or

�I
e ¼ 1 otherwise. If DME ¼ 0, then all true locations of damaged elements are detected. False alarm error index is chosen

as [39,40]

FAE ¼
1

NF

XNF

e¼1

�II
e for 0 � FAE � 1 (23)

where NF is the number of the predicted damaged elements and �II
e ¼ 0 if the predicted damaged element is truly damaged,

or �II
e ¼ 1 otherwise. If FAE ¼ 0, then all predicted damaged elements are truly damaged elements. These damage indexes

rely on the identification of the damage location and nothing is stated about damage severity.
Another index as mean sizing error [39] defines an average value of the absolute discrepancies between the true damage

parameters dPt and the predicted damage parameters dPp:

MSE ¼
1

ne

XnE

e¼1

jdPte � dPpej for 0 �MSE � 1 (24)

Also the relative error

RE ¼

Pne
e¼1jdPtej �

Pne
e¼1jdPpejPne

e¼1jdPtej
for 0 � RE � 1 (25)

and closeness index

CI ¼ 1�
kdPt � dPpk

kdPtk
for 0 � CI � 1 (26)
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Fig. 12. Standard deviation of the estimated parameters for case 3.
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Table 5
Comparison of damage indexes.

Case no. DME FAE DMS RE CI

1 0 0 0.003 �0.079 0.95

2 0 0.4 0.004 �0.136 0.92

3 0 0 0.003 �0.041 0.95

4 0 0 0.008 �0.295 0.88

5 0 0.4 0.005 �0.179 0.90

6 0 0.6 0.005 �0.079 0.95

7 0 0.5 0.009 �0.259 0.87

8 0 0.33 0.006 �0.106 0.93

Table 6
Frequency ranges for mass deterioration case.

Set 1 Set 2 Set 3 Set 4

Frequency ranges 205–212 170–176 233–240 210–215

227–235 190–200 262–272 225–230

250–258 212–217 290–299 265–270

279–285 233–240 306–315 278–283

300–312 262–272 390–400 304–310

325–330 290–299 – 325–329

363–366 – – 365–368

375–380 – – 375–378
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Fig. 13. Actual and predicted damage for the simulated deterioration in stiffness parameters: (a) stiffness estimation; (b) standard deviation.
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Fig. 14. Actual and predicted damage for the simulated deterioration in mass parameters: (a) mass estimation; (b) standard deviation.
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are indexes of the distance between the true and computed damage parameters vectors. An element is taken as a damaged
one if jdkpj � 2�MSE [39]. A comparison of the damage indexes of predicted results is given in Table 5. High levels of
accuracy in parameter estimates are indicated by zero values of DME, FAE, DMS, RE and CI of 1.
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As Figs. 4–11 and Table 5 show the proposed method is capable of localization of all damage elements. In addition to
elements identified as truly damaged, some elements that appear so may not actually be damaged. This is due to the
presence of noise in the FRF data, and sometimes to selected excitation frequency.

Damage is not always contained in a few elements, but might appear as deterioration of all structural elements in the
case of corrosion. To investigate the applicability of the proposed method in such a case, stiffness parameters of all
elements are contaminated with 20 percent random changes as a damage scenario Set 1 of frequency ranges in Table 6
is used for model updating. Fig. 13 shows the predicted damages and standard deviation of Monte Carlo simulations in
this case.

Similar to the damage prediction case in Fig. 12, the maximum standard deviation in Fig. 14 is related to element
number 8. In a similar case, 20 percent change of mass parameters resulted in the case being considered a damage case.
Frequency ranges given by Set 2 in Table 6 are used for model updating. Predicted damage and its related standard
deviation values are plotted in Fig. 14.
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Fig. 15. Actual and predicted damage for the simulated deterioration in mass parameters by frequency set 3: (a) mass estimation; (b) standard deviation.
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Fig. 16. Actual and predicted damage for the simulated deterioration in stiffness and mass parameters: (a) predicted stiffness parameters; (b) standard

deviation of predicted stiffness parameters; (c) predicted mass parameters; (d) standard deviation of predicted mass parameters.
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Fig. 14 shows less accuracy of the mass identification in comparison to the stiffness identification. As mentioned before,
dynamic behavior at the lower frequencies is dominated by stiffness, and for better mass identification higher frequencies
must be considered for model updating. In order to justify mass deterioration case was run using higher frequency ranges
given by Set 3 of frequency ranges in Table 6, and results are plotted in Fig. 15.

Better parameter estimation and lower standard deviations proved that higher frequencies are better for mass
estimations. It should be noted that this concept was tested in other cases, and the same results were found.

In a similar way deterioration in mass and stiffness parameters were considered simultaneously, and Set 4 in Table 6 is
used for parameter estimation. Predicted parameters and their standard deviations are given in Fig. 16.

Fig. 16 indicates robust parameter estimations in the considered deterioration case in the mass and stiffness. As
mentioned earlier, to have a more accurate evaluation of the transfer function of damaged structures Hd(o), an
unmeasured part of modal characteristics of the damaged structures is replaced by the corresponding data of the intact
structures (second term of (12)). To investigate the effects of omitting this part, it was excluded from (12) and damage case
two was run again. Since the damage detection process has not been converged using 10 first frequency data, it became
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Fig. 17. Actual and predicted damage for case 3 without second part of HdðoÞ in Eq. (12): (a) stiffness estimation; (b) standard deviation of the estimated

stiffness parameters.

Table 7
Excitation frequency for each set.

Frequency set 1 2 3 4

Frequency range 55–63 85–90 165–172 205–210

70–80 100–105 185–190 228–235

85–90 165–172 205–210 258–263

100–105 185–190 228–235 278–285

165–172 205–210 258–263 310–315

185–190 228–235 278–285 325–335
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Fig. 18. Predicted damage by first frequency set for case 4.
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necessary to include 16 first natural frequencies of the damaged structures, which is quite impractical. Also in this case 28
of 50 Monte Carlo simulations converged. Excluding the second term of (12) runs of most considered damage case show
divergence of the solution using 10 first natural frequencies. Results of this case are given in Fig. 17.

To investigate the effect of the frequency of excitation on the accuracy of predicted results, in the fourth damage case the
damage detection process has been done at several sets of frequency points. Excitation frequency ranges are given for each
set in Table 7. Also in these runs 15 percent of uniform random noise is added proportionally to the simulated data.
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Fig. 19. Predicted damage by second frequency set for case 4.
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Fig. 20. Predicted damage by third frequency set for case 4.
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Fig. 21. Predicted damage by fourth frequency set for case 4.



ARTICLE IN PRESS

Table 8
Damage index of frequency sets.

Frequency set no. DME FAE MSE RE CI Number of converged observations

1 0 0.375 0.019 �0.33 0.75 41

2 0 0.251 0.010 �0.12 0.85 49

3 0 0.285 0.007 �0.11 0.89 50

4 0 0.285 0.005 �0.09 0.94 50

A. Esfandiari et al. / Journal of Sound and Vibration 326 (2009) 557–573572
Actual and predicted damage for the fourth case at different frequency sets are given in Figs. 18–21 and the associated
damage index is given in Table 8.

As Table 8 shows, the best results are related to the fourth set, in which its excitation frequencies are selected at higher
ranges. Also increasing CI and decreasing MSE and RE indicate higher accurate identification as frequency ranges go to
higher ranges.

4. Conclusions

In this paper a structural damage detection method is presented using frequency response function and measured
natural frequency. Elemental level sensitivity of the FRF of the structure to occurrence of damage is characterized as a
function of changes of the stiffness and mass matrices, while effects of damping are included. Sensitivity equations are
solved by least square method to achieve changes in structural parameters. Results of truss model show the ability of this
method to identify location and severity of damages in the structural stiffness and mass. Effects of the excitation frequency
on model updating were investigated and it was found that at most damaged cases, the best predictions are done using
higher excitation frequencies.
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